If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36^-3x+3=(1/216)^x+1
We move all terms to the left:
36^-3x+3-((1/216)^x+1)=0
Domain of the equation: 216)^x+1)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-3x-((+1/216)^x+1)+3+36^=0
We add all the numbers together, and all the variables
-3x-((+1/216)^x+1)=0
We multiply all the terms by the denominator
-3x*216)^x+1)-((+1=0
Wy multiply elements
-648x^2+1=0
a = -648; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-648)·1
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-648}=\frac{0-36\sqrt{2}}{-1296} =-\frac{36\sqrt{2}}{-1296} =-\frac{\sqrt{2}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-648}=\frac{0+36\sqrt{2}}{-1296} =\frac{36\sqrt{2}}{-1296} =\frac{\sqrt{2}}{-36} $
| 5/9v-1.3=2/3v+1/3 | | (3x-6)(4x+4)=0 | | 5/9v-4.1=2/3v+1/3 | | -7(7x-3)+9=-49x+30 | | 12/5x+6=3/20x | | 1-3.5y+y=-1 | | -37(15y)+27(22y)=|79-79|+|-172+94| | | 54=x^2-14x+49 | | w/3+16=41 | | 8/12=20/x | | 5b-127=7 | | 6-(x+2)=14 | | -7=5+y | | 8+6x=21 | | 4(n+2)-2n=16+26 | | 5^2x+1=33 | | 8(x+12)=12 | | 5-25=10y | | 2x^2+x−6=0 | | x-2/5-1=x-1/6 | | 3x-10=x+110 | | 8(x-3)+7=2x(4-7) | | 3x^2+2x-21=5 | | 3(4)^(3x)-1=47 | | 12+96x-16x^2=0 | | 3/2x+5/x=13/(x+4) | | 8.3(c-3.1)=-37.35 | | 18=9x/20 | | 2x-1=4x+11 | | -6=16+-18y+y | | 2.25t5=13.5t+14 | | 11/6=n+7/9 |